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Neural mechanisms underlying amblyopia 
Lynne Kiorpes* and Suzanne P McKee? 

The nature of the neural basis of amblyopia is a matter of some 

debate. Recent neurophysiological data show correlates of 

amblyopia in the spatial properties of neurons in primary visual 

cortex. These neuronal deficits are probably the initial 

manifestation of the visual loss, but there are almost certainly 

additional deficits at higher levels of the visual pathways. 
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Abbreviations 
LGN lateral geniculate nucleus 
Vl primary visual cortex 

Introduction 
Amblyopia is a loss of vision that is associated with abnormal 
visual experience during infancy and early childhood, and is 
not of optical or organic origin. Children who develop 
anisometropia (i.e. unequal refractive error in the two eyes) 
or strabismus (a misalignment of the visual axes), or other 
conditions that create an obstacle to clear, equal binocular 
vision are at risk for developing amblyopia. Amblyopia is 
commonly identified by a difference in acuity between the 
eyes of at least a factor of 2 (comparable to a two-line differ- 
ence on an eye chart). On average, 40-60% of children with 
anisometropia and/or strabismus in childhood develop 
amblyopia; estimates of the incidence of amblyopia in the 
general population range from 24% [ 11. Amblyopia is a dis- 
order of development as the same visual conditions that 
cause amblyopia in childhood have no lasting effect on 
vision when they occur in adulthood. The critical period for 
the development of amblyopia is correlated with the time 
period for normal visual development [2*,3-S]. 

The neural basis of amblyopia has been a matter of interest 
and speculation for many decades. Of necessity, animal mod- 
els are used to study the mechanisms underlying amblyopia. 
Studies using primate models have shown a direct causal link 
between early abnormal visual experience and permanent 
deficits in visual function that are qualitatively and quantita- 
tively similar to human amblyopia [S-9]. Figure la, c 
illustrates the range of basic spatial visual deficits in ambly- 
epic monkeys, as measured psychophysically; amblyopic 
humans have a similar range of deficits. The spatial deficits 
are the hallmarks of amblyopia, but they are not the only 
manifestation of amblyopia; deficits in binocular vision may 
play a role in the development of amblyopia ([ 10,l 11; see also 

[ 121): stereopsis may be severely degraded and other aspects 
of form perception may be compromised. 

In this review, we primarily discuss work that concentrates 
on strabismus or anisometropia, conditions that are most 
commonly associated with amblyopia in humans. We focus 
on primate studies because data from cat models of ambly- 
opia are inconsistent (and it is not clear that cats develop 
amblyopia in a manner similar to humans). We discuss four 
proposed neural bases of amblyopia: abnormal neuronal 
response properties, poor synchronization of neuronal 
responses, abnormal topographic representation of recep- 
tive fields, and undersampling of visual space. The first 
two were proposed on the basis of neurophysiological data 
from animals; the second two are based on human psy- 
chophysics. Some degree of controversy surrounds each 
notion. We conclude that there are both primary and sec- 
ondary neural deficits involved in amblyopia; the first 
evidence of neural deficits appears at the level of the pri- 
mary visual cortex (Vl). 

Early work on amblyopia 
The earliest investigations into the neural basis of ambly- 
opia were directed towards the binocular properties of 
neurons in Vl [13]. These studies followed on the pio- 
neering work of Hubel and Wiesel (see [14]), who sutured 
the eyelids of young animals, resulting in nearly complete 
deprivation of form vision (this is a reasonable model, only, 
for the less common, very deep amblyopia resulting from 
congenital cataracts). Following lid-suture, binocularity is 
obliterated and neurons in Vl shift their allegiance away 
from the deprived eye. Some investigators, therefore, sug- 
gested that amblyopia resulted from a reduced 
representation of the deprived eye in Vl; however, this 
effect is not a consistent correlate of more common forms 
of amblyopia. 

Because amblyopia is primarily a disorder of spatial vision, 
other investigators looked at the spatial properties of neu- 
rons early in the visual pathways. Data from amblyopic 
monkeys suggest that no functional abnormalities exist 
earlier than Vl. Most studies of the retina in amblyopes 
conclude that there is no change at this level [1.5,16]. 
However, an intriguing recent report suggests optic disc 
abnormalities, observable at birth, predict later develop- 
ment of amblyopia [17]. Spatial and temporal response 
properties of neurons in the lateral geniculate nucleus 
(LGN), in which afferents from the two eyes remain seg- 
regated, are largely normal in amblyopic monkeys [18], 
even following more devastating, lid-suture deprivation 
[19-211. There are reports of anatomical deficits in the 
LGN of deprived monkeys, in the form of shrunken or 
cell-sparse deprived eye layers, but they seem to have no 
apparent correlate in neural signalling [13,15,22]. 



Neural mechanisms underlying amblyopia Kiorpes and McKee 451 

Figure 1 

(b) w 
0,4-( Anisometropic 

W 
0.41 

Spatial frequency (c/deg) Spatial resolution (c/deg) Spatial frequency (c/deg) Spatial resolution (c/deg) 

Current Opinion in Neurobiology 

Behavioral and physiological data for six amblyopic monkeys. 
(as) Spatial contrast sensitivity functions through the amblyopic (open 
circles) and fellow (filled circles) eye. The smooth curves were used to 
estimate the peak contrast sensitivity (height of curve), optimal spatial 
frequency (spatial frequency at the peak), and spatial resolution 
(i.e. the spatial frequency at which the curve falls to 1). The interocular 
difference on each of these parameters is used to capture the depth of 

amblyopia in Figure 2. (b,d) Distributions of contrast sensitivity and 
spatial resolution for neurons tested through each eye. The black bars 
represent amblyopic eye cells and the grey bars represent fellow eye 
cells. The physiological data for each monkey are placed adjacent to 
their behavioral data; within each amblyopia group, the data are shown 
in order of increasingly severe amblyopia (top to bottom). Data 
from [25”]. 

Neurophysiological approaches 
In amblyopic monkeys, correlates of abnormal early visu- 
al experience have consistently been found in Vl, which 
is where information from the two eyes is first combined. 
Many studies support the notion that amblyopia reflects 
the abnormal receptive field properties of the neurons 
linked to the amblyopic eye [18,23,24,25”]. Two compre- 
hensive investigations of Vl neurons in monkeys with 
behaviorally documented amblyopia have been conduct- 
ed [l&5”]; these studies are particularly important 
because they carefully documented visual function in the 
same animals from which the physiological data were 
drawn. Assessment of the full contrast sensitivity function 
was used to classify the depth of amblyopia in monkeys 
raised with either experimental anisometropia or strabis- 
mus (Figure 1). Spatial, temporal, orientation, and 
contrast response properties, as well as binocular organi- 
zation, were assessed for neurons driven by each eye in 
the fovea1 representation of Vl. There is a wide range of 
cell sensitivities on all response dimensions tested, as is 

characteristic of normal monkeys; however, there are clear 
interocular differences in the distributions for all but the 
mildest amblyopes. Figure lb,d shows spatial resolution 
and contrast sensitivity data from three strabismic and 
three anisometropic amblyopes [ZS”]. For each monkey, 
the range of overlap of the resolution and sensitivity data 
for neurons driven by each eye is substantial but the neur- 
al deficit, as captured by the geometric mean of each 
distribution, is clear in most animals (see [‘ZS”] for 
details). The effect is particularly clear for spatial resolu- 
tion. The extent of the neural deficit is related to the 
animal’s depth of amblyopia (Figure 2). Interestingly, 
some neurons driven by the amblyopic eye have spatial 
resolution finer than the behavioral acuity of the ambly- 
epic eye. Amblyopic animals do not appear to be able to 
use the responses of just a few cells to make a psy- 
chophysical judgement. This result suggests that it is 
important to look at the whole neuronal sample rather 
than only at the responses of the very best cells (i.e. the 
cells with the highest spatial resolution). 
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A quantitative comparison of behavioral and 
physiological deficits on spatial resolution, 
optimal spatial frequency, and contrast 
sensitivity in amblyopic monkeys. The 
interocular ratios (fellow eye/amblyopic eye, 
for each parameter) for psychophysical 
performance are taken from the curves in 
Figure 1 a,c; the interocular ratios for 
physiological sensitivity are taken from the 
geometric means of neuronal distributions 
(Figure 1 b,d; [25**1). If the behavioral and 
physiological deficits were commensurate, the 
data would cluster along the diagonal in each 
panel; the data largely fail below the diagonal, 
indicating a larger behavioral than 
physiological deficit. Data from [25*]. 

Although loss of binocular activation in Vl neurons is a con- 
sistent finding in amblyopic animals, recent studies have 
demonstrated residual binocular interactions in neurons that 
do not appear to be binocular by conventional evaluation 
[l&26]. The data show deficient excitatory interactions with 
binocular stimulation but a relative sparing of inhibitory, sup- 
pressive interactions, particularly in strabismics. The 
relationship between these residual binocular interactions 
and amblyopia is not clear. However, the data are important 
because they suggest a shift in the balance of interocular 
excitatory and inhibitory connections among binocular neu- 
rons in animals raised with conditions that can cause 
amblyopia. They also are puzzling because several studies 
have reported significant anatomical disruption of interocular 
long-range connections following strabismus [27,28]. If these 
connections are absent, one wonders what the substrate 
might be for the physiologically identified interactions. 

In addition to a reduction in binocular connectivity, stra- 
bismus reportedly affects the strength of interactions 
among neurons driven by the same eye. Roelfsema et al 
[29] have reported a reduction in synchronization strength 
among amblyopic eye neurons in Vl of strabismic cats. 
They recorded responses from multiple neurons simulta- 
neously and used a cross-correlation analysis in an attempt 
to assess synchrony of firing among neurons with similar 
properties (see review by Bair, in this issue, pp 4474.53). 
The strength of correlated firing among amblyopic eye 
neurons was in some cases reduced compared to fellow eye 
neurons. Even though the reduced correlation was found 
in only a subset of the cats, Roelfsema et al. [29] proposed 
that a lack of synchronous firing was the neural basis for 
amblyopia. A number of factors call this interpretation into 
question. First, the reported behavioral acuities for both 
eyes of most of the cats were substantially poorer than nor- 
mal; the cats may have been bilateral amblyopes, if 
amblyopes at all [30]. Chino etaL [31] showed cortical neu- 
ronal abnormalities, including reduced spatial resolution 
and contrast sensitivity, in cells driven by each eye of stra- 
bismic cats; some of the abnormalities were more dramatic 

for cells driven by the deviated eye than for cells driven by 
the fellow eye. Several of the cats were behaviorally iden- 
tified as bilateral amblyopes. It is therefore likely that 
there were neural abnormalities in addition to reduced 
synchrony in the Roelfsema d al. [29] study. Also, the 
interpretation of cross-correlograms is complex and may be 
compromised by slow neural changes that can yield a mis- 
leading impression of fast synchrony [32]. Finally, the 
phenomenon has been reported only in strabismic cats, 
and may again be secondary to strabismus, or idiosyncratic 
to cats, rather than a correlate of amblyopia generally. 

Psychophysical approaches 
The most extensively investigated proposals for the neur- 
al basis of amblyopia come from human psychophysics. 
For more than a decade, these studies have concentrated 
on understanding the substantial loss of positional acuity in 
the amblyopic fovea. Positional acuity refers to the preci- 
sion in judging the relative location of two features (e.g. 
Vernier acuity; see Figure 3c), which in normal fovea is 
typically S-10 arcsec. Positional acuity is much poorer than 
normal in all amblyopes. But for most anisometropic 
amblyopes, the loss can be predicted from their loss in 
grating acuity and is readily accounted for by a shift in spa- 
tial processing from high spatial frequency filters (small 
cortical receptive fields) to mid-range filters (larger recep- 
tive fields; see Figure 4a,b). In strabismic amblyopes, the 
positional acuity deficit is often much larger than would be 
predicted from their grating acuity. Two explanations have 
been proposed to account for this extra loss in strabismic 
positional acuity: first, undersampling of the post-recep- 
toral filtering array [333.51, or second, spatial disarray in 
the locations of the filters [36,37,38”] (see Figure 4c-f). 

The undersampling hypothesis proposes that there are too 
few filters at the scale corresponding to the strabismic ambly- 
ope’s grating acuity to tile the central visual field optimally. 
The disarray hypothesis proposes that the number of cortical 
filters is normal, but topographical information is incorrect or 
‘jittered’. Topographical jitter could theoretically arise either 
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Illustration of targets used for psychophysical studies of amblyopia. 
Bisection target (a) without and (b) with added noise jitter [42]; the 
subject discriminates the relative location of the central bar. (c) A 
classical Vernier target; the subject discriminates the relative positions 
of the top and bottom bar. (d) A typical contour integration stimulus; 
the subject determines the location of a string of aligned Gabor 
elements in a field of randomly oriented Gabor elements [47,43’,491. 
‘E’ target used by Wang et al. [43*], composed of Gabor elements, 
(e) as a complete figure, (f) with undersampling, and (g) with 
positional jitter. 

because of uncalibrated irregularity in the local filter array 
[38”,39] or because the local filters are mislabeled, so that 
the representation of spatial sequence is disordered [40]. 
Systematic mislabeling over large extents ought to be cor- 
rected by experience [41]. However, small random 
irregularities in the sampling matrix would be confounded 
with random fluctuations in the filter responses making com- 
pensation difficult for a biological system. Both 
undersampling and topographical jitter effectively leave 
‘holes’ in the representation of visual space at the finest 
scales, such that small differences in location are less well 
encoded than in the normal fovea; both ideas predict the 
extra loss in strabismic positional acuity. 

Attempts to -provide’ support for these ,hypotheses have 
taxed the experimental ingenuity of their proponents. 

(a) High spatial 
frequency Alters 

(b) Mid-range spatial 
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Cartoon representation of psychophysical explanations for amblyopia. 
Anisometropic amblyopes suffer (a) loss of high spatial frequency 
filters, which (b) shifts their acuity to mid-range filters. In addition to the 
loss of high spatial frequency filters, strabismics may also suffer from 
(c) too few filters near their acuity limit or from (d,e) topographical 
disarray, or possibly (f) from both. 

Several investigators have used an equivalent noise para- 
digm to estimate the postulated internal jitter in normal 
and amblyopic observers [42,43’,44”,45]. Wang et al. [43’] 
used a bisection acuity task and added random noise to the 
reference components of the stimuli (Figure 3a,b). The 
standard deviation of the added noise was varied to esti- 
mate equivalent internal jitter. Estimated internal jitter in 
both strabismic and anisometropic amblyopes was much 
higher than in normals and showed a strong dependence 
on stimulus visibility in all observers except one strabis- 
mic. Wang et ai. [43’] concluded that amblyopic tolerance 
for increased external jitter was attributable to blurring 
associated with dependence on larger spatial filters. They 
also parametrically varied the number of dots in the stim- 
uli to estimate efficiency of the amblyopic observers. They 
found a striking difference between anisometropic and 
strabismic amblyopes; anisometropic and normal observers 
were equally efficient in using the information in each 
additional dot, but strabismic amblyopes were woefully 
inefficient, needing many more samples to improve per- 
formance. While the latter observation supports the 
undersampling hypothesis, some amount of random jitter 
in the filter array is not ruled out. 
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Recent studies have turned toward more global perceptu- 
al consequences of positional deficits in amblyopes. Hess 
eta/. [38”] compared the ability of normals and strabismic 
amblyopes to detect deformations in a large circle, formed 
of a narrow band of spatial frequencies. Strabismic ambly- 
opes had difficulty detecting these global deformations, 
even for targets composed of spatial frequencies well 
within their acuity range. The authors showed that both 
undersampling and topographical jitter could account for 
their results. However, in this case, undersampling would 
need to extend over a wide range of spatial scales, not just 
those near the acuity limit, so they concluded that the jit- 
ter explanation was more reasonable. Levi et a/. [44”] 
took a direct approach to the question, using a task that 
required observers to integrate information over fairly 
substantial distances. They perturbed the position of the 
elements within an ‘E’ pattern and measured thresholds 
for discrimination of ‘E’ orientation (Figure 3e-g). 
Tolerance for positional jitter was identical for normal and 
strabismic amblyopes over a wide range of contrast levels. 
Levi et al. [44”] also assessed sampling efficiency for this 
task by determining how many elements of the pattern 
were needed for threshold identification. Strabismic 
amblyopes were much less efficient than normals, need- 
ing more elements in the pattern to perform the task, 
especially at fine spatial scales. These results suggest that, 
for strabismics, some of the pattern elements are not avail- 
able for use in pattern integration, providing further 
support for the undersampling hypothesis. 

Several investigators have suggested that contour inte- 
gration is disrupted in amblyopes [46,47,48’]. The 
phenomenon of contour integration is exemplified by 
the ability to detect a string of oriented Gabor patches 
aligned to form a common contour, when the string is 
embedded in a background of randomly oriented patch- 
es [49] (Figure 3d). Two careful studies from the Hess 
laboratory [48’,50’] have shown that contour integration 
is in fact abnormal in some strabismic, but not in ani- 
sometropic, amblyopes. Strabismics, using their 
amblyopic eye, are much more sensitive to perturbations 
in the orientation and position of patches forming the 
contour, and they need more patches in the string to 
equal the performance of fellow eye [48’]. In ani- 
sometropes, amblyopic eye performance is essentially 
identical to the normal eye, provided that the contrast 
and spatial frequency of the patches are chosen to guar- 
antee equal visibility in the two eyes [50’,51]. The 
contour integration results in strabismics are consistent 
with the hypothesis of Roelfsema ([WI; see also [29]), 
which predicts that strabismic amblyopes should have 
difficulty with feature detection tasks that may depend 
on ‘binding’ together elements of the feature through 
synchronous neural activity. However, Hess’ data 
[48’,50’] generally argue against the notion that reduced 
neuronal synchrony, per se, is the neural basis of ambly- 
opia, because anisometropic amblyopes do not have 
deficient performance on these feature-binding tasks. 

Conclusions 
On balance, psychophysical data from humans and mon- 
keys (see [7]) suggest that the basic deficit in amblyopia 
is one of simple visual sensitivity, that is, reduced con- 
trast sensitivity and spatial resolution. There is wide 
agreement that the extraordinary positional acuity 
deficits can be accounted for by equating stimulus visi- 
bility between the two eyes of an anisometropic 
amblyope, and also for some proportion of strabismic 
amblyopes. Strabismic and anisometropic monkeys show 
a similar pattern of behavioral deficits, which typically 
follows the pattern of human anisometropes. However, it 
is important to note that a large-scale evaluation of 
human amblyopes shows greater similarity between ani- 
sometropes and strabismics than was previously believed 
[53]. The neurophysiological data of Kiorpes et a/. [25”] 
and Movshon et al. [18] qualitatively account well for 
these basic deficits; amblyopic eye contrast sensitivity 
and acuity is reflected in reduced contrast response and 
spatial resolution of the neuronal population driven by 
that eye. Quantitatively, the neural deficit is smaller than 
the behavioral deficit, and the effect on neural contrast 
sensitivity is somewhat inconsistent. There is a reason- 
able neural substrate for undersampling in that fewer 
cells are driven by the amblyopic eye at fine spatial 
scales (near the acuity limit), and the neurons that are 
driven by the amblyopic eye tend to have larger recep- 
tive fields (i.e. respond to lower spatial frequencies). 
The physiological recordings did not reveal evidence for 
topographic disarray in the form of mislabelled receptive 
field locations, but they did not allow precise enough 
localization of the receptive fields to detect subtle disor- 
der. If topographic disarray is conceptualized as simply 
random, uncalibrated disarray, in place of a regular array 
of receptive fields, then it is really no different from 
undersampling. The sparse representation of amblyopic 
eye neurons in fovea1 Vl, found in a subset of animals 
[18,25”], could be a substrate for undersampling, as pos- 
tulated for a subset of human strabismic amblyopes. 

It is likely that the identified neurophysiological corre- 
lates of amblyopia are the basis of the perceptual 
deficits, but that they are amplified and extended at sub- 
sequent levels of the visual system. So the possibility 
remains that topographic disarray, while not apparent in 
Vl, exists at another level of the system, perhaps in the 
interareal feedforward or feedback projections or per- 
haps in extrastriate visual areas. Future research should 
be directed to higher levels of the visual system to see 
how the basic neural deficiencies are propagated beyond 
Vl. Imaging studies of human amblyopes are likely to be 
instrumental in establishing the loci of higher level 
deficits [54]. 
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